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Overview

Part I (25 minutes): Overview, usage, models

Part II (20 minutes): (tutorial) Methods for building a 1-dimensional model

Part III (25 minutes): (tutorial) Building a 1-dimensional model

Part IV (45 minutes): (tutorial) gwsurrogate, SurfinBH, and binaryBHexp (Vijay Varma)
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Advances and Challenges in Computational General Relativity
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Collaborators

Surrogate modeling methods have been developed and refined by many people over since 2011...

Jonathan Blackman, Chad Galley, Vijay Varma, Nur Rifat, Gaurav Khanna, Frank Herrmann, Jan
Hesthaven, Evan Ochsner, Manuel Tiglio, Harbir Antil, Ricardo Nochetto, Jason Kaye, Bela
Szilagyi, Mark Scheel, Dan Hemberger, Rory Smith, Kent Blackburn, Carl Haster, Michael Purrer,
Stephen Lau, Saul Teukolsky, Vivien Raymond, Patricia Schmidt, Mike Boyle, Larry Kidder, Harald
Pfeiffer, Davide Gerosa, Leo Stein, Tousif Islam, Feroz Shaik

blue = significant contributors to gwsurrogate code
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...and many simulations
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Outline
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2 GWSurrogate models
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Motivation/Overview

Gravitational waveform generation from compact binary coalescences is a computational
bottleneck for...

Template-based detection algorithms

Parameter estimation

Calibration of phenomenological or effective merger models (with NR)

Strategy for parameterized waveform models

Train an accurate and fast-to-evaluate surrogate model

The model is built entirely from simulation data

Only possible given the recent progress made in numerical relativity

NOT reduced physics

Surrogate converges to underlying model (NR) with more waveform data
Trade-off: model only valid in its training (temporal/parametric) interval

Scott Field Surrogate models



Overview GWSurrogate models Building a 1D model

Motivation/Overview

Gravitational waveform generation from compact binary coalescences is a computational
bottleneck for...

Template-based detection algorithms

Parameter estimation

Calibration of phenomenological or effective merger models (with NR)

Strategy for parameterized waveform models

Train an accurate and fast-to-evaluate surrogate model

The model is built entirely from simulation data

Only possible given the recent progress made in numerical relativity

NOT reduced physics

Surrogate converges to underlying model (NR) with more waveform data
Trade-off: model only valid in its training (temporal/parametric) interval

Scott Field Surrogate models



Overview GWSurrogate models Building a 1D model

Other approaches to speedup

Computational bottlenecks due to waveform generation costs are ubiquitous. Alternative solutions
include...

Closed-form & phenomenological models (Phenom{A,B,C,D,P,Pv2}, effective-one-body)

Algorithmic and hardware optimization of pipelines (e.g. GstLAL, PyCBC)

Extensive, model-specific optimizations (e.g. Devine, Etienne, McWilliams)

GPU acceleration (see tutorial by Michael Katz)

NR-based parameter estimation (see talk by Richard O’Shaughnessy)

And more!
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What is a surrogate model?

Surrogate(Merriam-Webster): one that serves as a substitute – mimics behavior of the full,
underlying model for a fixed range of the parameter and physical variables

Features

Surrogate will converge to underlying model with more training data
Only reproduces outputs of interest (waveforms, remnant values, etc)
Should be viewed as a waveform acceleration technique

Decisions

At which parameters should one evaluate the underlying model?
How to tie together these samples?
Often times different methods (e.g. SVD vs greedy; fits vs GPR) will result in similar
surrogate model quality – choices may just be a matter of familiarity or convenience.

Examples

Machine learning, fits/interpolation, reduced order modeling
At least for this talk, ROM = surrogate
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Why do we need surrogate models?

They are nearly indistinguishable from the underlying model
EOB surrogate models enable speed up factors of between 102 - 103

NR surrogates speedups ≈ 107 (0.01 seconds vs ≈ 1 week)
Due to these speedups, surrogates enable new kinds of studies to be carried out

Typical Bayesian inference run requires > 106 model evaluations
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Surrogate models (without matter)

Parametric dimensionality
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Closed-form waveform models

Cannon et al. (2010, 2012, 2013), Field et al.
(2011, 2012), Kaye (2012), Smith et al. (2013,
2016), Doctor et al. (2017), Chua et al. (2018)

(Multi-mode) Effective one body (EOB)

Field et al., (2014), Purrer (2014, 2016), Lackey et
al. (2019), Cotesta et al. (2020)

Multi-mode numerical relativity

Blackman et al., 2015 (non-spinning),
Blackman et al., 2017 (5d subspace),
Blackman et al., 2017 (full 7d , q ≤ 2)
Varma et al., 2019 (enlarged 7d, q ≤ 4)
Varma et al., 2019 (Hybridized, aligned spin)

Tidal models and q ≤ 104 have also been built
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Surrogates in LIGO-Virgo data analysis

Accelerate waveform generation by factors
of 102 (EOB models build by Purrer and
Cotesta; described by ODEs) to 108 (NR
models; described by PDEs)

EOB ROMs are extensively used as part of
the LSC’s parameter-estimation efforts as
well as template-bank detection

NR surrogates have been used in for
specific BBH events

Surrogate models have been essential to
the widespread use of both EOB and NR
waveforms for realistic data analysis efforts
with LSC data
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Who’s using surrogates? (partial list)

Studies of gravitational wave memory
(Lasky et al; PRL 2020)

Training neural networks (Wei et al; Physics
Letters B 2020)

Validating searches for primordial BHs (Nitz
et al; arXiv:2007.03583)

Measuring kicks (Varma et al; PRL 2020)

Building/assessing other models
(Garca-Quirs et al; PRD 2020)

Studying systematics of subdomiant modes
(Shaik et al; PRD 2020)

Analyzing GW190412 (Islam et al;
arXiv:2010.04848)
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Surrogates are great! What models can I use?

See Vijay Varma’s tutorial next for a full introduction to models for the waveform, dynamics, and
remnant properties
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GWSurrogate Python package

Goals:

Surrogate-building codes and data are model-specific (sometimes very different)

GWSurrogate: easy to install, easy to use, Python{2,3}-based

Current catalog of surrogate models + data access tools

Why not just use LALSimulation?

Some models will be ported, but...

Not everyone can or should need to install LALSimulation to use surrogates

Its unlikely that for each new surrogate there will be LALSimulation counterpart

Having multiple codes to evaluate the same model is good for the community

GWSurrogate API allows access of modes, basis functions, fits, and other surrogate data

More than just waveforms! Dynamics, remnant properties (SurfinBH), etc...

Scott Field Surrogate models
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GWSurrogate catalog

Installation:

>>> pip install gwsurrogate

Query the catalog:

>>> import gwsurrogate as gws

>>> gws.catalog.list(verbose=True)

NRSur7dq4

url: https://zenodo.org/record/3348115/files/NRSur7dq4.h5

md5 hash: 8e033ba4e4da1534b3738ae51549fb98

Description: Surrogate model for precessing binary black holes with mass ratios q<=4

and spin magnitudes <=0.8. This model is presented in Varma et al. 2019,

arxiv:1905.09300. All ell<=4 modes are included. The spin and frame dynamics

are also modeled.

References: https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.1.033015

10 surrogate models are available. Each has a name, dataset url, description, and reference.
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GWSurrogate catalog

>>> gws.catalog.list(verbose=False)

EOBNRv2

SpEC_q1_10_NoSpin

SpEC_q1_10_NoSpin_linear

SpEC_q1_10_NoSpin_linear_alt

NRSur4d2s_TDROM_grid12

NRSur4d2s_FDROM_grid12

NRHybSur3dq8

NRSur7dq4

NRHybSur3dq8Tidal

EMRISur1dq1e4

Lets look at some current and planned models...

Scott Field Surrogate models
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Name: SpEC q1 10 NoSpin

Nonspinning, 1 ≤ q ≤ 10, ` ≤ 8, 22 NR
training waveforms

Top: Waveform differences between
the two highest SpEC resolutions (black
circles), the full surrogate and SpEC
(red squares), and leave-one-out trial
surrogates and SpEC (blue triangles).

Bottom: The (2, 2) mode is shown for
the largest surrogate error q ≈ 2

Not in LALSimulation (LVC code)
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Name: NRHybSur3dq8{Tidal}
Hybridized spin-aligned model, 1 ≤ q ≤ 8,
` ≤ 4 + (5, 5), spins < 0.8

Top: 104 NR training waveforms sampling
3d space

Bottom: Histogram of errors (last 4000M)
for NR, NRHybSur3dq8, and
SEOBNRv4HM

Surrogate errors are cross-validation

NRHybSur3dq8(-Tidal) is (is not) in
LALSimulation

GWSurrogate version of NRHybSur3dq8
has passed LVC code review
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Name: NRSur7dq4

Generically precessing model, 1 ≤ q ≤ 4,
` ≤ 4, spins < 0.8

1528 NR training waveforms sampling 7d
space

Top: (2,2) and (2,1) modes in inertial
frame

Bottom: Histogram of cross-validation
errors

NRSur7dq4 is in LALSimulation

GWSurrogate version of has passed LVC
code review, and includes dynamics

Scott Field Surrogate models
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Name: EMRISur1dq1e4

Perturbation theory model, nonspinning,
3 ≤ q ≤ 104, ` ≤ 5

Adiabatic inspiral driven by GW radiation,
a latestage geodesic plunge, Ori-Thorne
transition trajectory between the two

Training data generated with Gaurav
Khanna’s Teukolsky solver

Le Tiec et al. (2011), Zimmerman et al.
(2016), and others found certain NR and
perturbation theory results agree
surprisingly well at modest mass ratios.
Waveforms seem to match too!

EMRISur1dq1e4 is also in the BHPTK
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Eccentric model (Coming soon!)

Name: TBD

Eccentric NR, nonspinning, q ≈ 1,
eccentricity non-zero at merger

Tousif Islam, Vijay Varma, SF +

Top: (2,2) mode in inertial frame

Bottom: Cross-validation mismatch errors
over parameter space
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Remarks

Surrogate and reduced order modeling offers an exciting new approach to overcome a variety
of computationally challenging problems of GW physics

Publicly available surrogate evaluation package GWSurrogate

Numerous Jupyter tutorial notebooks
Active development (version 1.0.7 released on Saturday)
Code hosted on github
Long-term plans: better documentation, more models, open/solve issues

Future outlook

Extending the range of validity of NR & IMRI/EMRI surrogates

As new models are built they will be included into the surrogate catalog

Contributions are welcomed! If you’ve built a surrogate model, we can happily add it to the
catalog

Scott Field Surrogate models
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Surrogates are great! But none have been built for my favorite model. What should I do?
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Lets build a 1D model

Tutorial location: https://github.com/vijayvarma392/ICERM_workshop

Parameter
sampler

N parameters {ʌ_i}_{i=1}^N

SpEC Solver

Training Data
{h(t;ʌ_i}_{i=1}^N

No

Fu
tu

re
 W

or
k

Bad parameter values

h_{Sur}(t;ʌ)

Accurate surrogate?
Yes

Decompose
 Data

Approximate
(decomposed) Data

h_S (t)

Build Surrogate

Waveform
Alignment

“top-level” view of surrogate model building.
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The setup

Choose your favorite 1-dimensional gravitational-wave model:

h(t, θ, φ; q) = h+(t, θ, φ; q)− ihx(t, θ, φ; q)

=
∞∑
`=2

∑̀
m=−`

h`m(t; q)−2Y`m (θ, φ) ,

θ and φ are angles for the direction of propagation away from the source.

q is the mass ratio.

−2Y`m are the harmonic functions

We will build a model for h`m(t; q)

Scott Field Surrogate models
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Strategy for parameterized problems

Collect training data

Training set: Evaluate the model at N values of q, giving us a N

{h`m(t; qi )}Ni=1

snapshots of the model

Training region: q ∈ [qmin, qmax], t ∈ [tmin, tmax]

Train the model
Train a surrogate model h`mS (t; q) such that h`m(t; q) ≈ h`mS (t; q) within the training region

This is a very general “learning from data” paradigm used in many fields of science and engineering
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Read the fine print

Two key limitations of surrogate modeling...

Drawback I: We must already have access to a model in order to build the surrogate.
Typical usage: the underlying model is too slow, the surrogate should be much faster to evaluate

Drawback II: We are only guaranteed the surrogate is accurate in the training region
Typical usage: Build the model for as large of a region as one expects to need
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Methods for 1D (this session)

We will consider “traditional” methods. These are well-suited for 1D, 3D, and beyond. Some
places they appeared include...

Closed-form models: Cannon et al. (2010, 2012, 2013), Field et al. (2011, 2012), Kaye
(2012), Smith et al. (2013, 2016)

Nonspinning, multimode effective one body: Field et al., (PRX 2014)

Spinning EOB: Purrer, (CQG 2014, PRD 2016)

NR Surrogates: Blackman et al

BNS models: Lackey et al (PRD 2017)

Reduced-order quadratures: Smith+ (PRD 2016), Canizares+ (PRL 2015), Antil+ (JSC
2013)

Scott Field Surrogate models
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Reduced order (surrogate) model schematic

q

t

1. Create training dataset from N model evaluations

2. Compress the model with n ≤ N model-specific basis set
hbasisi (t)

3. n specially selected times Ti

4. Parametric fits hFITµ (q;Ti ) at each Ti

5. Evaluate the surrogate at parameter value (yellow dot) by i)
evaluating the fits at each Ti which ii) specifies the full
waveform through an (empirical) interpolant:

hSµ(t; q) ≡
m∑
i=1

Bi (t)hFITµ (q;Ti )

where {Bi} is built from hbasisi (t)

Scott Field Surrogate models
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Reduced order (surrogate) model schematic – another view

Fig: Vijay Varma

1. Create training dataset from N model evaluations

2. Compress the model with n ≤ N model-specific basis set 3. n
specially selected times Ti

4. Parametric fits hFITµ (q;Ti ) at each Ti

5. Evaluate the surrogate at parameter value (yellow dot) by i)
evaluating the fits at each Ti which ii) specifies the full
waveform through an (empirical) interpolant:

hSµ(t; q) ≡
m∑
i=1

Bi (t)hFITµ (q;Ti )

where {Bi} is built from hbasisi (t)
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Step 1: basis generation

Seek a representation of the gravitational wave model

hµ(t) ≈
m∑
i=1

ci (µ)ei (t) or hµ(f ) ≈
m∑
i=1

ci (µ)ei (f )

for m as small as possible and µ = (mass, spin, . . . ) labels the parameterization

Sometimes referred to as a reduced order model (model is reduced to m degrees of freedom)

Whats special about ei ???

Application-specific basis

Fewer basis → faster computations

Some methods: Greedy-RB and singular value decomposition algorithms (details later).

Scott Field Surrogate models
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Slide courtesy of Chad Galley
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Example

Effective one body (Pan et al., 2011)

(2,2) mode for q ∈ [1, 2],
duration ≈ 12, 000M

Fast decay of approximation (overlap) error

maxq ‖hq −
∑m

i=1 ci (q)ei‖2

Other evidence

Observed across models, regimes

Observed by groups using POD/SVD

Cannon et al (PRD 044025)
M. Püerrer (arXiv:1402.4146)
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Waveform compression application (ex: q ∼ 1.2040)

Ortho.
Basis

Approx:
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h(t) ≈ c1e1(t) + c2e2(t)

(a) 2 term, err ∼ 1
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h(t) ≈ c1e1(t) + c2e2(t)

+c3e3(t) + c4e4(t)

(b) 4 term, err ∼ 10−1
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h(t) ≈ c1e1(t) + c2e2(t)

+c3e3(t) + c4e4(t)

+c5e5(t) + c6e6(t)

(c) 6 term, err ∼ 10−6
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Example: Parameterized Heaviside (toy IMR model)

Continuum:

H(µ− x)

x ∈ [−1, 1]

µ ∈ [−.2, .2]

Training set:

{H(µi − x)}

µi = −.2 +
.4

4000
i

i ∈ [0, . . . , 4000] −1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

 

 
µ = -.2

µ = .2

Two representative Heavisides
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Example: Parameterized Heaviside (toy IMR model)

1. Select first basis (seed):

H(−.2− x)
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µ = -.2
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Example: Parameterized Heaviside (toy IMR model)

1. Select first basis (seed):

H(−.2− x)

2. Find worst approximation:

Erri =

H(µi − x)− cH(−.2− x)
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1

 

 
µ = .2

Error
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Example: Parameterized Heaviside (toy IMR model)

1. Select first basis (seed):

H(−.2− x)

2. Find worst approximation:

Erri =

H(µi − x)− cH(−.2− x)

3. Second basis:

µ = .2 → H(.2− x)

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

 

 
µ = .2

Error

Repeat steps 2 & 3 until an approximation threshold is achieved
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Greedy output (basis):

µRB = { − 0.2, 0.2, 0.0203,

− 0.0844, 0.1147, . . . }

20 40 60 80 100 120

10
−1

10
0

Dimension of approximation space

Approximation error

Greedy algorithm “fails” (SVD will too). Non-smooth w.r.t. parameter variations.

If we let y(µ) = µ− x then only 1 basis function H(y) needed

Scott Field Surrogate models
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Need a fast/accurate way to compute the coefficients for any parameter µ

hµ(t) ≈∑m
i=1 ci (µ)ei (t)

A convenient expression for ci (µ) thanks to approximation theory...

Given m basis, there (usually) exists m times {Ti}mi=1 for which

{ci (µ)}mi=1 ⇐⇒ {hµ(Ti )}mi=1

m numbers ci contain equivalent information as m numbers hµ(Ti )

Scott Field Surrogate models
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Need a fast/accurate way to compute the coefficients for any parameter µ

hµ(t) ≈∑m
i=1 ci (µ)ei (t)

A convenient expression for ci (µ) thanks to approximation theory...

Given m basis, there (usually) exists m times {Ti}mi=1 for which

{ci (µ)}mi=1 ⇐⇒ {hµ(Ti )}mi=1

m numbers ci contain equivalent information as m numbers hµ(Ti )
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Empirical interpolation method

Input: m basis {ei (t)}mi=1

Output: Nearly optimal selection of m times {Ti}mi=1

These times are adapted to the problem/basis - unlike Chebyshev nodes

Barrault 2004, Maday 2009, Chaturantabut 2009, Sorensen 2009
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Interpolation points for EOB waveforms

What are the best temporal interpolation points for an EOB-basis?
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Model: non-spinning EOB, q ∈ [1, 2], 65-70 wave cycles (previous example)

12000 9000 6000 3000
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h
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50 0 50
t/M

2

1

0

1

2

Any waveform in the above range can be recovered through its evaluation at these 5 (error
∼ 10−4) to 19 (error ∼ 10−12) empirical time nodes

hµ(t) ≈
m∑
i

ci (µ)ei (t) =
m∑
i

Bi (t)hµ(Ti )
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Step 3: parametric fits

Main idea: Make the data look boring

We know how hµ(Ti ) should look

hµ(t) ≡ Aµ(t)e−iφµ(t)

A and φ are boring!

Polynomial fit (in q) works well

Aq(Ti ) ≈ Ai (q) =
N∑

n=0

anq
n
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Alternative choices

hµ(t) ≈
m∑
i

ci (µ)ei (t)

... no amplitude and phase decomposition.

ci (µ)→

ci (µ) “exotic” looking function

Deciding form of data to approximate is
important (“feature engineering”)
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Summary

These three (offline) steps complete the
building phase
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Final step: validate the model

Cross-validation (arXiv:1905.09300). Error bounds (arXiv:1308.3565)

Scott Field Surrogate models



Overview GWSurrogate models Building a 1D model Basis Alignment Temporal interpolation Parametric fits

Computing lab

Jupyter notebook demo (Today): building a 1-dimensional (2,2)-mode IMR model

Going further (Homework): Higher-dimensional models require more complicated data
decomposition and regression tools suited for high-dimensional data on scattered grids.
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